knee-holder - определение. Что такое knee-holder
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое knee-holder - определение

TYPE OF CONTINUITY OF A COMPLEX-VALUED FUNCTION
Holder continuous; Holder condition; Holder space; Hölder space; Hölder continuity; Hölder continuous function; Holder continuous function; Hölder class; Hölder continuous; Holder class; Holder continuity; Hoelder condition; Hoelder norm; Hölder norm; Holder norm; Hoelder space; Hoelder continuous function; Hoelder continuous; Hoelder class; Hoelder continuity; Hölder-continuous function; Holder function; Hölder seminorm; Hölder exponent; Holder exponent; Hölder assumption; Hölder spaces; Local Hölder continuity; Local Holder continuity; Locally Hölder continuous; Locally Holder continuous; Locally Hölder continuous function; Locally Holder continuous function

knee         
  • Lateral trauma to the knee can tear the medial collateral ligament, anterior cruciate ligament, and medial meniscus
  • Articular surfaces of femur
  • Articular surfaces of tibia
  • Arteries of the knee
  • Hip-knee-ankle angle.
  • Anterolateral aspect of right knee
  • Anteromedial aspect of right knee
  • Model demonstrating parts of an artificial knee
  • [[Radiography]] to examine eventual fractures after a knee injury
REGION AROUND THE KNEECAP
Knees; Knee-joint; Knee joint; Knee injury; Articulatio genus; Articulatio genu; NKIE; Bum knee; Tibiofemoral joint; Patellofemoral joint; Tibiofemoral; Knee cartilage; Knee surgery; Congenital patellar dislocation; Congenital knee dislocation; Medial patellar retinaculum; Knee joints; Tibiofemoral articulation; Tibiofemoral articulations; Tibiofemoral joints; Femoropatellar joint; Knee ligaments; Hip-knee-ankle angle; Screw home mechanism; Automatic rotation; Terminal Rotation
¦ noun
1. the joint between the thigh and the lower leg.
a person's lap.
2. an angled piece of wood or metal supporting the beams of a wooden ship.
3. an abrupt obtuse or right-angled bend in a graph.
¦ verb (knees, kneeing, kneed) hit with the knee.
Phrases
at one's mother's (or father's) knee at an early age.
bend (or bow) the (or one's) knee submit.
bring someone (or something) to their (or its) knees reduce someone or something to a state of weakness or submission.
on bended knee(s) kneeling.
Origin
OE cneow, cneo, of Gmc origin.
Knee         
  • Lateral trauma to the knee can tear the medial collateral ligament, anterior cruciate ligament, and medial meniscus
  • Articular surfaces of femur
  • Articular surfaces of tibia
  • Arteries of the knee
  • Hip-knee-ankle angle.
  • Anterolateral aspect of right knee
  • Anteromedial aspect of right knee
  • Model demonstrating parts of an artificial knee
  • [[Radiography]] to examine eventual fractures after a knee injury
REGION AROUND THE KNEECAP
Knees; Knee-joint; Knee joint; Knee injury; Articulatio genus; Articulatio genu; NKIE; Bum knee; Tibiofemoral joint; Patellofemoral joint; Tibiofemoral; Knee cartilage; Knee surgery; Congenital patellar dislocation; Congenital knee dislocation; Medial patellar retinaculum; Knee joints; Tibiofemoral articulation; Tibiofemoral articulations; Tibiofemoral joints; Femoropatellar joint; Knee ligaments; Hip-knee-ankle angle; Screw home mechanism; Automatic rotation; Terminal Rotation
In humans and other primates, the knee joins the thigh with the leg and consists of two joints: one between the femur and tibia (tibiofemoral joint), and one between the femur and patella (patellofemoral joint). It is the largest joint in the human body.
Knee         
  • Lateral trauma to the knee can tear the medial collateral ligament, anterior cruciate ligament, and medial meniscus
  • Articular surfaces of femur
  • Articular surfaces of tibia
  • Arteries of the knee
  • Hip-knee-ankle angle.
  • Anterolateral aspect of right knee
  • Anteromedial aspect of right knee
  • Model demonstrating parts of an artificial knee
  • [[Radiography]] to examine eventual fractures after a knee injury
REGION AROUND THE KNEECAP
Knees; Knee-joint; Knee joint; Knee injury; Articulatio genus; Articulatio genu; NKIE; Bum knee; Tibiofemoral joint; Patellofemoral joint; Tibiofemoral; Knee cartilage; Knee surgery; Congenital patellar dislocation; Congenital knee dislocation; Medial patellar retinaculum; Knee joints; Tibiofemoral articulation; Tibiofemoral articulations; Tibiofemoral joints; Femoropatellar joint; Knee ligaments; Hip-knee-ankle angle; Screw home mechanism; Automatic rotation; Terminal Rotation
·vt To supplicate by kneeling.
II. Knee ·noun In man, the joint in the middle part of the leg.
III. Knee ·noun A bending of the knee, as in respect or courtesy.
IV. Knee ·noun The joint, or region of the joint, between the thigh and leg.
V. Knee ·noun In the horse and allied animals, the carpal joint, corresponding to the wrist in man.
VI. Knee ·noun A piece of timber or metal formed with an angle somewhat in the shape of the human knee when bent.

Википедия

Hölder condition

In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that

| f ( x ) f ( y ) | C x y α {\displaystyle |f(x)-f(y)|\leq C\|x-y\|^{\alpha }}

for all x and y in the domain of f. More generally, the condition can be formulated for functions between any two metric spaces. The number α is called the exponent of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder.

We have the following chain of strict inclusions for functions over a closed and bounded non-trivial interval of the real line:

Continuously differentiableLipschitz continuousα-Hölder continuousuniformly continuouscontinuous,

where 0 < α ≤ 1.